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Abstract 
Efficient coding (lossless) and compression (lossy) of 
diffraction patterns is important in protein crystallogra- 
phy experiments because of storage and transmission 
limitations. The goal is to reduce the bit-rate significantly 
while keeping diffraction peak intensity distortion at an 
acceptable level. This paper presents an overview of 
coding and compression techniques more or less adapted 
to such problems. A large part of this study is dedicated 
to time-frequency-transform based compression algo- 
rithms and some of their extensions. Wavelet based 
software has been developed and tested. Results are 
compared with the discrete cosine transform (DCT) and 
other classical algorithms. These tools seem attractive 
and very promising for analyzing and compressing 
signals with singularities and transient phenomena such 
as diffraction peaks. Tests were performed on a standard 
protein crystallography data set coming from the CCD 
detector of D2AM beamline at the European Synchrotron 
Radiation Facility at Grenoble. These were compressed 
with DCT and wavelet-based algorithms. It appears that 
alterations of the result of the processing of restored 
images remain very weak for compression rates up to 10. 
These preliminary results indicate that the proposed 
wavelet method is a good standard technique for efficient 
compression of diffraction patterns. 

1. Introduction 

Crystallography of biological macromolecules, and more 
generally experiments using two-dimensional detectors, 
provide a huge amount of data, with an increasing data- 
collection rate because of the development of third- 
generation synchrotron sources and fast detectors. The 
volume and rate of these data become a major problem 
that the fast progress of hardware (networks, CPU, hard 
disks, etc.) cannot solve. 

In this context, the development of compression 
algorithms, adapted to each kind of data, becomes a 
major challenge. Typical diffraction-pattern images 
consist of a fiat background sprinkled with diffraction 
peaks. Compression of such images, usually much more 
efficient than simple traditional coding, unavoidably 
leads to a loss of information. Since these images are 
subjected to stringent quantitative analysis, this loss must 

© 1998 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

be estimated precisely and the compression method must 
be proven not to discard useful information. 

This paper gives an overview of available coding (§3) 
and compression methods (~4). A large part of this study 
is dedicated to wavelet transform based compression 
algorithms and some of their extensions. Indeed, these 
tools seem attractive and very promising for analyzing 
and compressing signals with singularities and transient 
phenomena such as diffraction peaks. Results on protein 
crystallography data coming from the CCD detector of 
the D2AM beamline (Roth, Ferrer, Simon & Geissler, 
1992; Simon et al., 1992; Fanchon, Ferrer, Kahn, Bertet 
& Roth, 1995) at the European Synchrotron Radiation 
Facility at Grenoble (ESRF) indicate that the proposed 
wavelet methods excel over standard techniques for 
efficient compression. 

2. Data analysis 

2.1. Volume o f  data 

The development of fast two-dimensional detectors for 
crystallography experiments has drastically reduced the 
experiment time costs. As a consequence, the data flow 
of these experiments, when coupled to intense radiation 
sources, has strongly increased. A multiwavelength 
anomalous diffraction (MAD) experiment on biological 
macromolecules is certainly one of the most demanding 
experiments with respect to the data volume and rate 
problem. Indeed, it consists of a repetition, at several 
wavelengths, of a typical crystallography experiment. 
Moreover, as the studied object (the biological macro- 
molecule) is very complex (several thousand degrees of 
freedom), each of these data sets, which includes this 
information as intensities of diffraction peaks, is very 
large. Typically, we need about 1800 frames for a 'three- 
wavelength' MAD experiment with 0.3 ° rotation per 
frame and 180 ° of total rotation range (required to get the 
maximum of completeness for P2 crystal symmetry for 
example). With a 1024 x 1024 pixel 16-bit dynamic 
detector each frame requires 2M bytes. The total storage 
capacity required for this experiment is 3.6G bytes. The 
storage and the transfer and backup of these data become 
a real problem. Indeed, while this experiment can be 
performed in about 10 h on the D2AM beamline at the 
ESRF, the time requested for data transfer is presented in 
Table 1. 
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Table 1. Time requested for transfer and backup of  a 
typical data set. 

The compression rate (R) obtained with this data set for the DAT with 
build-in compression (LZ based algorithm) is about 2. 

Tested rate 
Hardware Theoretical rate (bytes s -]) Time 

Local Ethemet link 10M bits s -~ 500K 2 h 
Shared Ethernet network 10M bits s -~ 10K 4.2 d 
Local ATM link (Raid 

HD) ll5Mbits s -l 5M 12min 
Local ATM link (std. HD) 115M bits S - 1  2M 30 min 
90 m DAT backup 183K bytes s-I 167K 6 h 
90 m DAT backup with 

compression R × 10K bytes s -1 334K 3 h 
120 m DAT backup 51 OK bytes s- l 45 OK 2 h 14 min 
120 m DAT backup with 

compression R x 51 OK bytes s-n 900K 1 h 7 min 

Therefore, it is obvious that data compression becomes 
a necessity for short-time handling and long-time backup 
of  the data. 

2.2. Statistical analysis, relevant information 

Compression methods with no loss of  information, i.e. 
fully reversible lossless compression, can be used 
without any knowledge of  the useful information in the 
image. However, the compression rate (the ratio between 
the sizes of initial and compressed files) depends strongly 
on the statistics of  the image and cannot be continuously 
monitored. We shall refer to such invertible methods as 
'lossless coding' or 'lossless redundancy removers' 
because all the information in the original image can 
be recovered and the compression is achieved by 
removing redundant information (§3). In contrast, lossy 
compression suppresses redundancy but also a 'small '  
part of  the information. Such a process allows a tunable 
compression rate, but without guarantee for relevant 
information which must be analyzed accurately and a 
comparison made between initial and rebuilt data (§4). 
Therefore, a statistical analysis of  the image is the first 
step in choosing a compression method. Indeed, images 
of  interest are not purely stochastic and exhibit 
redundancy. There are three types of redundancy (Hilton, 
Jawerth & Sengupta, 1994): spatial redundancy (correla- 
tion between adjacent pixels in direct space or band 
limited in Fourier space), spectral redundancy (correla- 
tion of spectral values of the same pixel location) and 
temporal redundancy (low change for the same pixel in 
adjacent frames of a video sequence). 

A sequence of diffraction patterns exhibits all these 
kinds of redundancy. Indeed, a diffraction pattern consists 
of  a set of  narrow diffraction peaks sprinkled on a low'- 
intensity background (see Fig. 1). A correlation diagram 
of adjacent pixels exhibits these two populations as two 
sets of  spots close to the main diagonal (see Fig. 2). 
However, the short-range correlation which appears in 

this diagram decreases rapidly at a larger distance (see 
Fig. 3). Moreover, each value in the dynamic range does 
not appear with the same probability, as shown by a 
histogram (see Fig. 4). This last point can be expressed 
by means of  the Shannon entropy which is maximal 
when every value of  the intensity appears with the same 
probability and vanishes when all pixels have the same 
value (see §3 and §5). The last form of redundancy, the 
temporal redundancy, is obvious for a data collection 
which consists of  a lot of  diffraction patterns performed 
at closed orientations of  the sample: across the stack of 
frames each peak appears and disappears slowly. 

As described above, diffraction patterns consist mainly 
of a background and sometimes there is a diffraction 

Fig. 1. Diffraction pattern obtained with a crystal of lithostathine protein 
on the D2AM beamline at the ESRF (test image). 

10 4 

10 3 
• O .  

• 

~n2 . , • , . . . .  , 

10.2,, 10 3 
Pixel value 

• w Ow • • i ¸ 

• • 

• * ~ O ~ ' ~  

• ~' 

e 
e 

e * O  O 

* Q  

O 

0 

Fig. 2. Pixel-to-pixel correlation of the test image (see Fig. 1): each 
pixel is plotted versus its closest right neighbor. 
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peak. The pertinent information concerns the position 
and intensity of these peaks corrected for background 
and an estimation of the variance of this intensity. The 
intensity is computed by integration (sum of the value of 
pixels) alter removing of the background estimated by 
local averaging techniques. This processing is very close 
to astrometric and photometric measurements on astron- 
omy images (White, Postman & Lattanzi, 1991). For 
such images which are subjected to careful quantitative 
analysis, visual criteria (Watson, Yang, Solomon & 
Villasenor, 1996; Algazi, Kato, Miyahara & Kotani, 
1992) are not relevant. In our case, the comparison of 
peak intensities, calculated on the original and the 
reconstructed image, will be the absolute criteria for 
estimating the efficiency when irreversible compression 
algorithms are applied. 
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Fig. 3. Histograms of the pixels differences for close pixels of the test 
image (probability of the difference for pixel distances from 1 to 100 
pixels). 
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Fig. 4. Histogram of the test image (see Fig. 1): 99.9% of the pixels are 
in the 100-200 range. 

3. C o d i n g  ( iossless  compres s ion )  

Reversible compression methods generally consist of a 
modeling process followed by coding. The set of both 
processes is usually called 'coding'. Modeling is 
performed by a collection of rules which associate code 
to an entry datum or set of data in a more efficient way. 
This efficiency is expressed as the maximum decrease in 
the size of output data compared with the size of input 
data. 

The easier coding process, the linear predictor method, 
consists of coding the difference between the value of a 
pixel, in the case of an image, and an estimated value, 
calculated from adjacent pixels, or versus the value of the 
same pixel in previous images in the case of a set of 
similar images. This reduces the dynamic range and, 
thus, the required number of bits for coding. In the case 
of noisy images, like diffraction patterns, this leads to a 
very low compression rate, compared with the one 
obtained with the methods that follow. 

Historically, the first efficient general purpose coding 
processes were the Shannon-Fano and the Huffman 
coding process (Huffman, 1952). The idea is to associate 
the shortest code to frequently encountered input 
symbols in the input stream as close as possible to the 
optimal length estimated by Shannon, 

number of bits _~ - log2(occurring probability). (1) 

Rapidly, the first step, which consists of a statistical study 
of the overall data set - the result must be transmitted to 
the uncoding process - was replaced by an adaptive 
process which evaluates probabilities of symbols and 
performs coding during the same scanning process. The 
compression rate, low at the beginning, increases rapidly. 
This is the adaptive Huffman coding. It leads to the best 
compression rate with integer size coding, estimated by 
the Shannon entropy, 

minimum length >_ - N  ~f'~(ni/N ) X log2(ni/N), (2) 
i 

where ni denotes the number of input symbols equal to i, 
and N is the total number of symbols. The arithmetic 
coding, close to the Huffman coding, eliminates the 
limitation of the integer size of the previous coding and 
leads to the output size given by expression (2). 

The above coding processes exploit the non-unifor- 
mity of the input symbols statistic. Dictionary modeling- 
based coding processes improve the compression rate by 
exploiting the non-uniform statistics of input sequences 
of symbols, thus reducing the spatial redundancy (see 
§2). These algorithms were developed by Ziv, Lempel & 
Welch (Ziv & Lempel, 1977, 1978; Welch, 1984) and are 
called LZ77, LZ78 (dictionary with fixed-length window 
which is translated along the symbol stream during the 
scanning) and LZW algorithms (the dictionary is a 
logical tree which is built character per character). They 
all are adaptive coding processes where each known 
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sequence occurring in the input stream is replaced by its 
index in the dictionary. The dictionary is set up to date 
whenever an unknown sequence appears. 

Recently, two new types of algorithms are becoming 
very popular. The first one is based on the so-called finite 
context modeling. The second one consists of block 
sorting of data. Both are usually coupled to an arithmetic 
coding or some other classical redundancy remover. 

Table 2 recalls the common implementations of the 
previously discussed algorithms (see references in §6). 

4. Lossy compression 
4.1. General principle 

The key of transform-domain data compression 
methods is based on finding a signal or image 
representation, preferably one computable via a fast 
transform algorithm, that provides the ability to represent 
complicated signals or images accurately with a relatively 
small number of bits. A first step is to find a 
transformation which gathers relevant information on a 
small and intense part of the output signal. The output of 
such a transform may be a set of coefficients with only a 
few of them being large and uncorrelated. The efficiency 
of such compression methods depends mainly on this 
first step: the choice of the transform. No standard 
solution exists, and this choice must usually be adapted 
to the signal to be compressed. Efficiency of the 
representation can then be measured by several numerical 
criteria (cost functions). Some of them exhibit additive 
properties, which reduce the algorithmic complexity. 
Four of these additive criteria, used in our tests, are listed 
below. We use the notation x = Y~w c~ei to denote the 
decomposition of a vector x on an orthonormal basis {ei}, 
and t to denote a given threshold. 

Shannon entropy: 

. - _  2(,c,,2/,x, 2). 
where Ixl 2 = E Icil 2 and Icil 2 log Ic/I 2 = 0 for c i = O. 

Bit-length norm: 

s = - ~ log[1 + (Icillt)]. 

Density of representation: 

= ~ 1(Icil S ~t ) ,  

where I denotes the indicator function. 
Log energy: 

s = - Z l°g(Icil21 Ixl 2) for (ci :/: 0), 

where I x l l 2 = ~ l c i l  2. 
The second step of a lossy compression scheme 

consists in replacing the real number coefficients c; of the 

Table 2. Common implementations o f  some algorithms 
for  data compression 

Algorithm Particularity Usual name Environment 

Adaptive Huffman 
Huffmann code compact UNIX 

Huffman code, 
byte-by-byte pack UNIX 

Lempel-Ziv PKZIP PC 
(LZ77) gzip UNIX 

Lempel-Ziv & compress UNIX 
Welch ARC PC 

PKWare PC 
Lharc PC 
ARJ PC 
GIF All 

MNP-5 Modems 
V42bis Modems 

Finite context 11.4 (HSC) UNIX 
modeling Stat UNIX 

CALIC UNIX 
BWT PC, UNIX 
bzip UNIX 

Japan 

Graphical format 

CCITT standard 

Block sorting 

image's expansion obtained by the transform with lower 
precision approximations which can be coded in a (small) 
finite number of digits. If the transform step is effective, 
then the new coordinates are mostly very small and can 
be set to zero, while only few coordinates are large 
enough to survive. This is usually done by thresholding 
or 'quantization'. For example, if (ci) represent the 
expansion coefficients of an image s, we may find that 
keeping only n coefficients leads to a reconstruction of s 
with a negligible error. Moreover, instead of storing the 
large ci as floating-point numbers, one may round them 
off to a short fixed-point representation typically through 
a quantization process. This step corresponds to the 
practical notion of quantization. The output of thresh- 
olding and quantization is a stream of small integers, 
most of which are the same (namely 0). The loss of 
information in the recovered image ~ after thresholding 
and quantization is mainly because of these procedures. 
Several strategies Ci "~ O(Ci) for thresholding coefficients 
may be used. We list below the most usual ones. 

Linear hard thresholding, 

O(ci) = ciI(Ic,[>t), 

where t = a . m a x ( [ c i l )  and I denotes the indicator 
function. 

Logarithmic hard thresholding, 

rl(ci) -- ciI(Icil>t), 

where, this time, t =  a .  I log[max(Ic, I)]l (a is an user- 
defined positive coefficient). 

Soft thresholding, 

O(ci) = sgn(ci)(Ic;I- t)+, 

where (u)+ -- max(0, u) and t is a chosen fixed threshold. 



188 DATA COMPRESSION FOR DIFFRACTION PATTERNS 

One can summarize the thresholding process to a 
setting which evaluates inexactly the coefficients of s 
with the aim of reconstructing s itself with a minimal 
loss. The thresholded coefficients are then quantized 
before being stored. The range of transformed values is 
divided into numbered subintervals or bins. Any value 
falling into a bin is approximated by the bin's index. 
Quantization is undone by replacing the bin index with 
the value at the center of the bin. An example is uniform 
quantization. One chooses a quantum q and discretizes 
the floating point thresholded coefficients by recording, 
instead of Icil, the integer/~ such that 2£q is the closest to 
I~il among all such multiples. The reconstruction error is 
then, at most, of size q in the retained coordinates and of 
size ci in the discarded coordinates. 

In most cases, lossy compression includes a third step. 
This final step consists of removing redundancy with a 
coding process (see §3). Its aim is to replace the stream of 
small integers that must be stored with a more efficient 
alphabet of variable-length characters. It takes advantage 
on the large number of zero or small coefficients 
produced by the previous step. 

Most of the algorithms which are tested below (§6) are 
designed according to these three steps (see Fig. 5). 

4.2. Frequency analysis 
The role of transform-domain data compression has 

traditionally been filled by the fast Fourier transform and 
its related fast trigonometric transforms, particularly the 
discrete cosine transform (DCT) (see e.g. Rao & Yip, 
1990). An important class of alternatives is provided by 
wavelet transforms. The purpose of this subsection is to 
briefly review the main ideas behind such transforms. 

4.2.1. Fourier transform. The best known transform is 
the Fourier transform for s(t) ~ L2(R), 

s ( t ) ~ f : ~ s ( t ) e x p (  - 2 # r w t ) d t ' _  

(~u. ~,,***) ] 

~omp,e,,io. qu~.~. | P"7I 
( r,~tered/qu~mnzed "~ I co~ L. transformed image ) |un i 

coo  I l coo  t- 
(compressed image)  - - -=1 

1.0 

Fig. 5. General algorithm of  compression, including three main steps: (i) 
transform; (ii) filtering, like thresholding or quantization (unrever- 
sible operations); and (iii) redundancy removal. 

Limitation of this transform comes from the lack of 
spatial localization: localized information of s(t) is 
spread all along the Fourier space and reciprocally. As 
a consequence, all coefficients are necessary with the 
same accuracy to build back locally the initial signal. 
Fourier transform is global and provides a description of 
the overall regularity of signal. Transform-coefficient 
quantization strategies tend to sacrifice high-frequency 
signal content to preserve more important lower 
frequency information, and if no space-frequency 
localization is imposed on a Fourier decomposition, the 
universal loss of high-frequency content results in Gibbs 
artifacts. The use of this transform for compression of 
functions with local features is, therefore, inefficient. 
Some form of tiling or windowing is, therefore, an 
unavoidable component of any Fourier-based image 
coding algorithm. 

4.2.2. Windowed Fourier transform. To improve and 
localize the properties of the Fourier transform, the 
oscillating vector Wo~(t ) = exp(-2in'wt) can be multi- 
plied by a compactly supported, or at least rapidly 
decreasing, function (window function) ~(t). In one 
dimension this transform can be depicted as in Fig. 6 
below. 

The scalar product of a signal s(t) with ~(t - i)Wo~(t ) 
provides the w-frequency component of s(t) within f2i, 
the compact support of ~ ( t - / ) ,  which is called the 
instantaneous frequency component. A particular choice 
of qJ leads to a basis of the space L2(R ) (Gabor, 1946). A 
decomposition into this basis generates a time-frequency 
transformation where localized properties of the initial 
signal are kept efficiently. However, this windowed 
Fourier transform has no orthonormal properties (ortho- 
gonality is convenient for treating adequately an 
eventually noisy signal) and is limited by the fixed scale 
of ~(t). 
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Fig. 6. In the windowed Fourier transform, the classical oscillating 
vector Ww(t ) of  the Fourier transform is multiplied by the window 
function (dashed line) Y(t- to)= exp[ - ( t - t0 )2 ] ,  here at the 
location t o = 1. 
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A discrete form of such a windowed transform is the 
discrete cosine transform (DCT) which is used in the 
image compression standard drafted by the International 
Standards Organization's Joint Photographic Experts 
Group (known as 'J-PEG') (Pennebaker & Mitchel, 
1992). The JPEG compression standard is based on 
partitioning a digital image into 8 × 8 pixel blocks, 
applying a two-dimensional discrete cosine transforms to 
each block and compressing the output of each eight 
discrete cosine transform by applying an integer division 
quantization matrix. Even at moderate compression rates, 
the JPEG algorithm sometimes produces highly objec- 
tionable 'tiling artifacts' resulting from boundary mis- 
matches between the quantized low-frequency cosine 
modes in adjacent tiles. 

In the case of our diffraction patterns, the tiling 
artifacts and edge effects inherent in JPEG image coding 
may be vexatious since they affect the intensity of 
diffraction peaks occurring between two adjacent boxes. 

In contrast, decompositions based on compactly 
supported wavelets achieve simultaneous space-fre- 
quency localization with no need for windowing and 
are particularly well suited for compressing high- 
resolution images (Wickerhauser, 1992), so let us briefly 
review the mathematical ideas behind wavelet trans- 
forms. 

4.2.3. Wavelet transform. A wavelet series (or 'multi- 
resolution decomposition') is a scale-based decomposi- 
tion of a signal into a linear superposition of dilates and 
translates of two special functions: a scaling function, ~p, 
which carries the mean value and other low frequency 
behavior of  the signal, and a mother wavelet, ~p, which 
has mean 0 and encodes details of the signal from 
different length scales. Recall that the span {ej;j ~ Z} 
denotes the linear space of all finite linear combination of 
ej's, i.e. of the form Y~4~J cjej where J is a finite subset of 
Z. One defines spaces in terms of the dilates and 
translates of the two functions ~0 and ~, 

Vj = s--Oa--fi{q)j.k(x ) = 2J/2q)(2Jx- k); k e Z} 

Multiresolution analysis also holds the key to construct 
scaling functions and mother wavelets: since 
tp e V 0 c V l, it follows that the scaling function for a 
multiresolution approximation may be obtained as the 
solution of the two-scale dilational equation, 

q)(x) = ~ ho(k)q)(2x - k), (3) 
k 

for some suitable sequence of  coefficients, ho(k ). Once ~0 
has been found, an associated mother wavelet is given in 
a similar-looking recipe, 

tp(x) -- Z hl(k)rp(2x- k). (4) 
k 

Of course some effort is required to produce appro- 
priate coefficient sequences, ho(k ) and h I (k). Daubechies 
(Daubechies, 1992) developed such sequences with finite 
length that produce compactly supported functions q9 and 
~p with whatever regularity one needs. 

Another interpretation of  a multiresolution analysis is 
to see it as a description of the analyzed signal s in terms 
of  its 'local averages' (the terms in V0) and its 'local 
details' (the terms in the Wj spaces). The decomposition 
may or not be orthogonal; in the orthogonal case (which 
includes the compactly supported Daubechies wavelets) 
the coefficient of the wavelet decomposition of a signal s 
are given by, 

Sj, k - -  (S ,  q)j .k)  - -  fR s(t)gJ'k(t)dt 

f 
dj.k = (s, ~Pj.k) = JR s(t)$g'k(t)' dt. 

Given these coefficients, the signal s can be written as, 

kEZ j>O k e Z  

or, in a more symbolic way, 

wj - s - ~ { ~ % ( x )  = 2J/2~(2Jx- k); k e z}, 

the overbar denoting the closure. The scaling spaces, 
generate a multiresolution approximation of L2(R ), 

and the wavelet spaces Wj, 'fill the gaps' between 
successive scales, 

vj+, = v j .  

where @ denotes the direct sum of subspaces. 
In particular, we can start with approximation on some 

nominal scale, say V 0, and then use wavelets to fill in the 
missing details on finer and finer scales, 

L2(R ) = V o + O~=oWj. 

m - 1  

---S~ + E D m _ j .  S (5) 
j=O 

There is also a discrete version of multiresolution 
analysis for sampled data. Prior to the discovery of 
continuous wavelets, multiresolution transform methods 
have been studied in the field of digital signal processing 
under the name of  multirate filter banks. Filter banks 
provide fast effective means of separating a digital signal 
into different frequency components. When the filter is 
finite (as in the case of compactly supported wavelets), 
this frequency separation is accomplished using only 
local computations (as compared to non-local methods 
like the discrete-time Fourier transform). 

One of the big discoveries for both the wavelet and 
filter banks theories was that distortion-free filter banks 
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can be formed using the coefficient sequences, h 0 and hi, 
from the two-scale dilation equations [(3), (4)] for a 
multiresolution approximation. By cascading (i.e. com- 
posing) the analysis bank with itself a number of times, 
one can form a digital signal decomposition with dyadic 
frequency scaling, known as a discrete wavelet transform 
(DWT), leading to fast transformation algorithms that are 
even faster than the discrete fast Fourier transform, 

n - I  

sj, k -- y ~  ho(i)sj+l,2k+i, k = 0 . . . 2 J -  1 
i=0 ( 6 )  
n-1 

clj ,k = Z hl(i)sj +1,2k+i' 

i=0 
k = O . . . Y - 1  

where sj, k is periodized (sj, k+2j = sj, k) and n is the finite 
length of the coefficient sequences h 0 and h 1. Recon- 
struction is performed with, 

n-1 n-1 
sJ, k = Z ho(2k - i)sj-1, i + E hl(2k - i)sj -1,i+2j-~' 

i=0 /=0 

k = 0 . . . 2  j - l -  1 

(7) 

For the Daubechies-2 wavelet transform (the so-called 
Haar transform, with n = 2), coefficients are, 

h0(0 ) - 1/21/2, h0(1 ) = 1/21/2 

hi(0 ) - 1/21/2, hi(1 ) = _1/21/2. 

The interested reader can find a textbook exposition on 
the subject by consulting, for example, Meyer (1992). 

Fig. 7 illustrates the DWT principle. For a discrete 
s i g n a l  {si}i= 1 ..... 2,n, the recursive computation of scale 
detail coefficients from the smallest scale 2 0 =  1 (the 
initial function) up to the largest scale 2" can be 
described with a two-dimensional pyramid scheme (for 
m = 3). Each scale function is split into a scale and a 
detail function, and so on. The discrete wavelet transform 
is defined as the sum of details and the lower scale 
coefficients. 

4.2.4. Wavelet packet analysis. The wavelet packets 
method is a generalization of wavelet decomposition 
methods that offers a wider range of possibilities for 
signal analysis and compression. 

In wavelet analysis a signal is split into an approxima- 
tion and a detail. The approximation is then itself split 
into a second-level approximation and detail and the 
process is repeated [see equation (5)]. For an m-level 
decomposition there are m + 1 possible ways to encode a 
signal, 

S = S 1 --~ D 1 
= S 2 + D2 + D1 
-- S 3 + D3 + D2 + D1. 

In wavelet packet analysis, the details as well as the 
approximations are split. One then obtains a wavelet 
decomposition binary tree (see Fig. 8). The leaves of 
every connected binary subtree of the wavelet packet tree 
correspond to an orthogonal basis. For a finite energy 
signal any wavelet-packet basis will provide exact 
reconstruction and will offer a specific way to encode 
the signal. For instance, a wavelet-packet analysis allows 
the signal S = S O to be represented as 
S 1 + S S D  3 + D S D  3 + D D  2 which is an example of 
representation that is not possible with ordinary wavelet 
analysis. Based on the organization of the wavelet-packet 
library, a signal of length N = 2" can be expanded in 
more than 2Sdifferent ways. Indeed, if we denote by U, 
the number of different ways to encode the signal S up to 
the n level (n< m), we then get, 

U,+I -- U2 + I. 

As this number may be very large, and since explicit 
enumeration is generally unmanageable, choosing one 

{si}i--I ..... 8 

{sssi}i=l,211 I 

Fig. 7. Discrete wavelet transform: illustration of the recursive 
computation for an eight coefficient long initial signal. The gray 
boxes contain coefficients of the DWT, made from the detail 
coefficients at each scale and the lowest scale coefficient (bottom-lett 
box). 

I { si }i= 1 ..... 8 ] 
I 

I 

I sss i}i__l,2 ] ~ ~ {sdsi}i=l'2 

Fig. 8. Wavelet packet analysis. At the opposite of the DWT, each set of 
detail coefficient is split again into scale and detail coefficients. This 
lead to several wavelet basis, each one made from the choice of sets 
of coefficient to cover the initial signal. In gray, one of such a basis. 
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out of all these possible ways to encode a given signal 
leads to an interesting NP-hard problem (Davis, 1994). It 
is necessary to find an optimal decomposition with 
respect to a convenient criterion, computable by an 
efficient algorithm. One may use a cost criterion, and 
choose an appropriate decomposition by looking at each 
node of the wavelet-packet tree and quantifying the 
information to be gained by performing each split. Cost 
criteria relying upon functionals with an additive-type 
property are well suited for such an optimal decomposi- 
tion. Classical entropy-based cost criteria match quite 
well these conditions (Coifman, Meyer & Quake, 1989)• 

The choice of the 'best' decomposition in a wavelet- 
packet tree is an example of a more general problem: find 
an optimal representation of a signal as a linear 
combination of elements forming a library of bases. 
Another algorithm available for solving such problems is 
the matching pursuit algorithm (Mallat & Zhang, 1993). 
The inconvenience of both these algorithms, compared 
with a classical wavelet decomposition, is that the 
indexes of the basis vectors that are chosen must be 
stored for an efficient reconstruction. The decrease of the 
required number of coefficients that are necessary for a 
given quadratic error (QDRI see §5.2) of the representa- 
tion is compensated by the increase of stored informa- 
tion, and globally the compression rate decreases, at least 
for the images we are dealing with in this paper. 

5. Test setup 

5.1. Image description 
Lossless and lossy compression methods described 

above have been tested with our protein crystal 
diffraction patterns. They were produced by a XRII- 
CCD camera on the D2AM beamline at the ESRF 
(European Synchrotron Radiation Facility, 1994). This 
camera, developed at the ESRF (Moy, 1994; Bourgeois, 
Moy, Svensson & Kvick, 1994), is made from a modified 
Thomson image intensifier and a Princeton CCD camera, 
coupled by lenses. This device produces 16 bit, 1242 
x 1152 pixel images plus a 4100 byte long header (total 
size of an image: 2 865 668 bytes). The gain of this 
detector, which is the product of the fixed gain of the 
intensifier and the tunable losses of the lenses, has been 
tuned in order to be close to one. In this context, one 
X-ray photon at a typical energy of 12.5 keV produces 
about five electrons in a well of the CCD chip. These 
electrons are converted by an ADC to one count on a full 
scale of 65 535 (2 byte coding). However, the total signal 
of a pixel, which can be roughly considered as having 
Poisson statistics, is not only the result of incoming 
X-rays on the entrance window but can be split into three 
origins: (i) detector contribution (offset, dark current, 
read-out noise, etc.), (ii) parasitic events (cosmic rays, 
ions hitting the cathode of the intensifier); and (iii) X-rays 
(scattering, diffracted photons). 

As a consequence, the image consists of a few sharp 
spots (diffraction peaks, cosmic rays) on a noisy 
background (scattering, dark current, read-out noise). 
This visual aspect hides another difference due to the 
origin of the counting. On one hand, the contribution of 
the CCD itself (dark current, read-out noise) which has 
no significant spatial correlation. On the other, the 
contribution of the intensifier (X-rays, ions and cosmic 
rays): due to the focusing limit, the image of a single 
photon hitting the entrance window is spread onto several 
pixels of the CCD (2 or 3 pixels FWHM). This leads to a 
spatial convolution of patterns by the so-called point 
spread function (PSF). Each part of the structure of an 
image, including diffraction peaks with a natural size 
sometimes smaller than a pixel, is broadened by few 
pixels. As a consequence, close pixels become highly 
correlated, as illustrated with the test image (see Fig. 2). 
This short-range correlation decreases rapidly with 
distance: for pixels at a distance equal to 2, the 
probability of obtaining a difference lower than 5 is 30% 
less than that for very close pixels (see Fig. 3). 

5.2. Organization of tests 
The tests performed include all or part of the following 

steps (see Fig. 5): (a) transform (~4); (b) filtering, 
quantization (irreversible steps, see §4); and (c) removal 
of redundancy (i.e. coding, see §3). 

The result is evaluated according to two criteria: 
compression ratio and accuracy of reconstruction. The 
compression ratio is expressed as the ratio, in percent, 
between the sizes of the compressed and initial files. The 
counterpart of this compression ratio for lossy compres- 
sion processes is the difference between the reconstructed 
image and the initial one. This is measured by four 
quantities: (i) the LI(R N) distance: Y~iilaii -a'iil/N, (ii) 

• t , ' 2  ~ 1 / 2  ~ . . .  the quadratic distance: [~-~;•j(a 0 -a~j)/N] ; (111) the 
absolute difference in integration of a strong peak; and 
(iv) the absolute difference in integration of a weak peak, 
(with i andj  the horizontal and vertical coordinates of the 
pixel and N the number of pixels per image: N -- 
1 430 784). The second criterion, the quadratic distance 
between the restored and the initial images (QDRI), will 
be the criterion used for graphical comparisons (see §6). 

These quantities can be easily evaluated on a single 
image. So they are used to compare several algorithms 
with a great number of parameter sets for each one (§6.1 
and §6.2). At the end, when few algorithms have been 
selected, a more relevant criterion is used (§6.3): a full set 
of rebuilt images is processed and the result is compared 
with the initial data processing. The processing is 
performed with the XDS program of W. Kabsch (Kabsch, 
1988a,b, 1993). During the data processing, the R~ym 
factor is computed. This is a good factor of merit of the 
quality of data, and thus a good evaluation of the data 
alteration during the compression-decompression opera- 
tion. This factor is an averaged measurement of the 
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difference between integrated reflections which should be 
identical for crystallographic reasons, 

R s y  m - -  Z ~ ] l i ' hk l  - -  ( I hk l ) ]  Z Z ( l h k l )  
hkl i=1 hkl i=1 

with 

Nhja 
= 

i=1 

where Nhu is the number of equivalent reflections and 
Y~hkt the sum on non-equivalent ones. 

Another criterion is obtained by merging data which 
should be equivalent. This is commonly performed for a 
data set collected with two crystals of the same protein. 
Once the scaling is done, a mean ratio can then be 
computed for reflections which are shared by both data 
sets. This operation is performed with )(scale, a program 
of the XDS package. 

The last criterion is the visual aspect of images. 
Indeed, the first evaluation of the quality of data is given 
by a visual check of images: diffraction peaks well 
contrasted, no parasitic features, etc. As far as possible, it 
is of some importance to avoid visual artifacts like the 
blocking effect (mosaic-like aspect due to steps from one 
block to another: this may occur when the algorithm 
splits the image in such blocks), edge effects, etc. 

Another important parameter is the compression time, 
since this operation has to be performed on-line. This 
time, estimated by the Unix time command, includes 
reading, compression and writing of the compressed 
image. It is given for HP 9000/730 workstation with 
1.3Gbytes SCSI2 hard drives. This information is 
relevant for optimized software only. So, it is given for 
several coding methods, performed with well known 
software, but not for methods which are under develop- 
ment, as well as for software running only in an 
interactive mode (see Table 3 below). 

6. Tests 

6.1. Lossless compression 

In order to compare the algorithms and software, we 
have used a typical image (see Fig. 1) produced by a 
crystal of lithostathine protein (Bertran et al., 1996). This 
image is part of a data set collected in 1995. 

Various coding methods have been tested. Most of 
these tests were performed with Unix tools (compact, 
compress, gzip etc.). As expected, LZ-based coding 
[compress (Welch, 1984) software, used in our tests at the 
maximum compression rate and, as a consequence, the 
slowest mode] is much more efficient than Huffman 
coding (pack and compact software). A slightly better 
result is obtained by a bit-plane coding combined with 
LZ algorithm. Bit-plane coding consists of a reorganiza- 

Table 3. Comparison between several lossless compres- 
sion algorithms 

The Cpu time is given for a HP 9000/730 workstation. 

% of initial 
Coding algorithm Software name size Time (s) 

Huffman pack 45.4 2.32 
Adaptive Huffman compact 45.4 24.32 
JBIG slr4 (AT&T) 29.5 84.56 
LZW compress 33.1 4.00 
LZ77 gzip 1.2.4 34.4 71.47 
Difference coding Pack from CCP4 30.9 4.02 
Difference coding FIT2D 26.0 - -  
Arithmetic coding ha 0.999 (ASC) 33.6 136.2 
Finite context ha 0.999 (HSC) 24.6 53.17 
Finite context Stat package 24.6 32.33 
Burrows-Wheeler 
Transform B WT package 27.3 26.72 
pl. cod. + LZ77 - -  30.0 - -  
pl. cod. + rep. + LZ77 - -  30.2 - -  

tion of the data to gather bits of the same weight on close 
bytes. This coding can be combined with a repetition 
coding (a sequence of the same bit value is replaced by 
the number of times this value occurs, coded on 2 bytes). 
Such a coding is very efficient with bit-plane of high 
weight which is mainly at zero in our example (most of 
the pixels belong to the background and are lower than 
200, see Fig. 4). The standardized JBIG algorithm (ISO, 
1991) perform such a bit-plane coding. After dividing an 
image into bitplanes, compression is carried out using a 
Q-coder (Pennebaker, Mitchell, Langdon & Arps, 1988). 

Another promising method (Burrows-Wheeler trans- 
form, see Nelson, 1966) consists of performing first a 
sorting and then a run-length encoding and an order-0 
adaptive encoding. In contrast, diffraction pattems 
dedicated tools such as Pack (from the CCP4 package, 
see Abrahams, 1993) and FIT2D (Hammersley, 1995) are 
fast and perform a quite reasonable compression rate. 
Both algorithms exploit the spatial correlation between 
close pixels, assuming that pixels differences can be 
coded with a low bit rate. For example, compression is 
achieved by Pack by first calculating the differences 
between every pixel and the truncated value of four of its 
neighbors. After calculating the differences, they are 
encoded in a packed array, with a reduced number of bits. 

The best result was obtained with a finite context 
model based coding. The software we used also performs 
an arithmetic coding on a statistical model based on a 
sliding window dictionary (ASC method). However, the 
compression rate is higher when it runs the finite context 
model (HSC method) (Hirvola, 1997). In any case, the 
compression time is quite long. Other implementations of 
a finite context algorithm are CALIC (Wu & Memon, 
1995) and Stat (Bellard, 1995). The latter is faster than 
HA but requires an optimization of some parameters 
according to the type of image to be compressed. All of 
these results are gathered in the Table 3. 
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Table 4. Compression tests with the DCT 

dct + ZZ(16 × 16) means that a DCT is performed with 16 × 16 block size, followed by a 'zigzag' sorting of  coefficients, quant.(Q = 4), 4 ~ 2 bytes 
means that each block is divided by a quantification matrix a,j = 1 + Q(I + i + j )  and coefficients are coded as short integers instead of  4 byte 
integers, which is equivalent to a scalar quantization. The compression ratio (the size of  the compressed file as a percentage of  the initial one) is 
obtained after a last coding step performed with the Unix compress command. 

Distance Abs (error) on peak 
Compression 

Transform Filtering ratio Li quadr Weak (%) Strong (%) 

dct (16 x 16) - -  65.83 0.0 0.0 0.0 0.0 
dct + ZZ(16 x 16) - -  64.83 0.0 0.0 0.0 0.0 
dct (16 × 16) 4"-,a2 bytes 29.78 0.1633 0.4717 2.4920 0.00564 
det + ZZ(16 × 16) 4",~2 bytes 30.22 0.1633 0.4717 2.4920 0.00564 
dct + ZZ(16 × 16) quant.(Q) = 1) 25.13 0.8562 1.1593 1.2624 0.00037 
dct + ZZ(16 × 16) quant.(Q = 2) 14.83 1.4510 1.8920 2.7111 0.01014 
dct + ZZ(16 × 16) quant.(Q = 3) 10.09 1.7757 2.3168 1.2624 0.00566 
dct + ZZ(16 × 16) quant.(Q = 4) 7.64 1.9699 2.5821 3.4629 0.01798 
dct + ZZ(16 × 16) quant.(Q = 5) 6.15 2.1011 2.7731 3.8222 0.03905 
dct + ZZ(16 x 16) quant.(Q = 1), 4",,a2 bytes 11.22 2.6036 3.9600 1.5694 0.01401 
dct + ZZ(16 × 16) quant.(Q = 2), 4",,a2 bytes 7.75 2.8002 4.6994 2.9892 0.02582 
dct + ZZ(16 x 16) quant.(Q = 3), 4"-~2 bytes 6.24 3.5451 6.8299 4.6401 0.04120 
dct + ZZ(16 × 16) quant.(Q = 4), 4 ~ 2  bytes 5.58 2.3530 3.1612 8.8706 0.00075 
dct + ZZ(16 × 16) quant.(Q = 5), 4"-,a2 bytes 4.65 2.4537 3.3555 3.7922 0.01042 
dct (8 x 8) - -  55.60 0.0 0.0 0.0 0.0 
dct + ZZ(8 × 8) - -  55.58 0.0 0.0 0.0 0.0 
dct (8 × 8) 4",,a2 bytes 23.51 0.4211 0.6725 1.1548 0.00080 
dct + ZZ(8 × 8) 4"-,a2 bytes 23.14 0.4211 0.6725 1.1548 0.00079 
dct + ZZ(8 x 8) quant.(Q = 1) 24.57 0.8760 1.1794 0.7726 0.01139 
dct + ZZ(8 × 8) quant.(Q = 2) 14.82 1.4764 1.9135 0.9637 0.00937 
dct + ZZ(8 × 8) quant.(Q = 3) 10.30 1.8022 2.3343 2.6331 0.02603 
dct + ZZ(8 × 8) quant.(Q = 4) 7.91 1.9976 2.5977 2.1682 0.02213 
d c t+  ZZ(8 x 8) quant.(Q = 5) 6.45 2.1311 2.7829 4.9375 0.03350 
d c t+  ZZ(8 × 8) quant.(Q = 1), 4",,a2 bytes 10.36 2.9520 4.1561 2.8247 0.01436 
dct + ZZ(8 × 8) quant.(Q = 2), 4",~2 bytes 7.49 3.1030 4.7318 1.1168 0.03503 
d c t+  ZZ(8 × 8) quant.(Q = 3), 4",~2 bytes 5.39 4.1721 6.9473 3.5630 0.03335 
dct + ZZ(8 × 8) quant.(Q = 4), 4"-,a2 bytes 4.73 2.3846 3.1582 2.2631 0.04420 
dct + ZZ(8 × 8) quant.(Q = 5), 4"xa2 bytes 3.97 2.4660 3.2835 4.0733 0.06168 

Considering that the size of the compressed file gives 
an idea of the true amount of non-redundant information 
contained in the initial file, this size has been measured 
after removing some features of the image. This filtering 
has been done with mathematical morphology tools. 
Combination of erosions and dilatations authorizes to 
remove components of controlled size. With this method, 
either diffraction peaks, low spatial frequency compo- 
nents of the background or high-frequency noise have 
been compressed separately with compress. This shows 
that the main part of the 'information' is contained in the 
high-frequency background, the compressed size of 
which is close to that of the complete image, whereas 
the compressed size of peaks and low spatial frequencies 
of the background is negligible. 

6.2. Lossy compression 

In this section, several lossly compression algorithms 
are tested on the same test image described in §6.1. 

Discrete cosine transform (DCT) was tested for 
various matrix sizes, quantizations and coding methods. 
Quantization is characterized by a 'Quality' number 

(Nelson, 1993). In this case, the quantization process 
consists of an integer division of the transformed matrix 
components by [1 + (1 + i + j )  × Quality], where i and j 
are row and column indices. The results are listed in 
Table 4. In this table the ZZ means that a zigzag sorting 
of coefficients was performed. This is a sort of 
coefficients of each block in order that low-frequency 
coefficients occur first in a sequential order. These results 
show that the QDRI and compression ratio are not very 
sensitive to the zigzag sorting of coefficients or to the 
block size (8 × 8 or 16 x 16 in our examples). 

Wavelet transform has been tested for various 
Daubechies and Coifman wavelet (Daubechies, 1992) 
functions, filters and codings. The results are listed in 
Tables 5 and 6. The deep parameter is the number of 
iterations (default value: 10). The wavelet transform is a 
periodized one-dimensional transform, applied to col- 
umns of the image (except for case 'Nrow*n', where 
several columns where gathered). When iterations of the 
transform lead to an odd number of scale coefficients, the 
following iteration is performed after removal of the last 
scale coefficient, which is considered as a detail one in 
further iterations. The so-called wave[int] consists of an 
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T a b l e  5. Compression tests with the wavelet transform 

wavelet(deep = 7)(order = 4) [resp. coiflet(deep = 7)(order = 4)] means that the fourth order (default: second order) Daubechies wavelet (resp. 
Coifman wavelet) transform is performed up to the seventh level (default: tenth level for wavelet and seventh level for coiflet), wave[int] means that 
an integer - interpolating - wavelet transform is performed. 3.75Log(max) is the value of  the threshold when applied, sort + de1:85% means that 
coefficients are sorted and the 85% smallest ones are suppressed. 3 ~ 2  bytes means that coefficients are coded as short integers instead of  the 
required number of  bytes (here 3). I byte = 8 bits. JBIG + c means that a mask of  non-zero coefficients is created and coded with JBIG, when non- 
zero coefficients are sorted along columns. The compression ratio (the size of  the compressed file as a percentage of  the initial one) is obtained after 
a last coding step performed with the Unix compress command. 

Compression 
Transform Filtering Coding ratio 

wavelet(deep = 7) 
wavelet(deep = 10) 
wavelet(deep = 7) 
wavelet(deep = 10) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 10) 
wavelet(deep -- 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep-- 7) 
wavelet(deep = 7) 
wavelet(deep-- 7) 
wavelet(deep = 7) 
wavelet(deep --- 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 1) 
wavelet(deep = 2) 
wavelet(deep = 3) 
wavelet(deep = 4) 
wavelet(deep = 5) 
wavelet(deep = 6) 
wavelet(deep = 7) 
wavelet(deep = 8) 
wavelet(deep = 9) 
wavelet(deep = 10) 
wavelet(order = 4) 
wavelet(order--- 6) 
wavelet(order = 8) 
wavelet(order = 12) 
wavelet(order = 16) 
wavelet(order = 20) 
wavelet(NROWx2) 
wavelet(NROWx6) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 
wavelet(deep = 7) 

/ 
/ 
/ 
/ 

3 ",,a 2 bytes 
0.25Log(max), 3",,a2 bytes 
1.25Log(max), 3",~,2 bytes 

3 ",~2 bytes 
0.25Log(max), 3 ~ 2  bytes 
1.25Log(max), 3 ~ 2  bytes 

27 b i t s~2 bytes 
3 ",,~2 bytes 

0.25Log(max), 3 ~ 2  bytes 
0.50Log(max), 3",,~2 bytes 
0.75Log(max), 3 ~ 2  bytes 
1.00Log(max), 3",,a2 bytes 
1.25Log(max), 3",,a2 bytes 
1.50Log(max), 3",,a2 bytes 
1.75Log(max), 3",,a2 bytes 
2.00Log(max), 3 ~ 2  bytes 
2.25Log(max), 3",~2 bytes 
2.50Log(max), 3",~2 bytes 
2.75Log(max), 3 ~ 2  bytes 
3.00Log(max), 3",,a2 bytes 
3.25Log(max), 3",,a2 bytes 
3.50Log(max), 3"~2 bytes 
3.75Log(max), 3"~2 bytes 
4.00Log(max), 3 ~ 2  bytes 
sort + de1:85%, 3",~2 bytes 

sort + de1:85% 19 bitsX,,a2 bytes 
sort + de1:85% 20 bits"~2 bytes 
sort + de1:85% 21 bits",,~2 bytes 
sort + de1:85% 22 bits"~2 bytes 
sort + de1:85% 23 bits",~2 bytes 
sort + de1:85% 24 bits",,a2 bytes 
sort + de1:85%, 25 bits",,a2 bytes 
sort + de1:85%, 26 bits",,~2 bytes 
sort + de1:85%, 27 bits",,a2 bytes 

sort + dei:85%,",~2 bytes 
sort + de1:85%,"~2 bytes 
sort + del:85%,",,a2 bytes 
sort + de1:85%,",~2 bytes 
sort + de1:85%,",,~2 bytes 
sort + dei:85%,",,a2 bytes 

sort + de1:85%, 27 bits",,~2 bytes 
sort + de1:85%, 27 bits",,a2 bytes 

morph.(l/5), 3",,~2 bytes 
morph.(2/6), 3",~2 bytes 

morph.(l/10), 3",,a2 bytes 
1.25Log/2 "/2, 3",,a2 bytes 
1.50Log/2 m/:, 3",,~2 bytes 
1.75Log/2 ~/', 3",,a2 bytes 
2.00Log/2 "/2, 3"~2 bytes 
2.00Log/2 '~, 3",~2 bytes 
2.50Log/2", 3"~2 bytes 

Distance Abs (error)on peak 

Lx quadr Weak (%) Strong (%) 

48.18 0.0 0.0 0.0 0.0 
107.2 0.0 0.0 0.0 0.0 

sort 48.88 0.0 0.0 0.0 0.0 
sort 106.6 0.0 0.0 0.0 0.0 

JBIG + r 35.75 0.0054 0.0738 0.0244 0.00331 
JBIG + r 30.95 0.1833 0.4285 1.1899 0.00451 
JBIG + r 9.669 1.7786 2.2655 2.3832 0.05566 
JBIG + c 34.62 0.0054 0.0738 0.0244 0.00331 
JBIG + c 29.99 0.1833 0.4285 1.1899 0.00451 
JBIG + c 9.297 1.7786 2.2655 2.3832 0.05566 

34.85 3 .7e-5  0.0743 0.1647 0.00330 
34.86 0.0054 0.0738 0.0244 0.00331 
30.66 0.1833 0.4285 1.1899 0.00451 
23.23 0.7046 0.9994 0.7422 0.00011 
17.91 1.0727 1.4148 0.4780 0.00606 
12.75 1.5197 1.9427 2.5144 0.01282 
9.910 1.7786 2.2655 2.3832 0,05566 
6.951 2.0896 2.6714 0.1417 0.03636 
5.553 2.2520 2.8925 5.3765 0.05587 
4.145 2.4108 3.1171 8.5171 0.07178 
3.410 2.5125 3.2644 9.8234 0.08215 
2.720 2.6079 3.4066 12.721 0.10048 
2.251 2.6812 3.5128 8.5661 0.11706 
1.983 2.7265 3.5791 4.4911 0.20795 
1.779 2.7678 3.6419 2.3075 0.20636 
1.636 2.7985 3.6880 0.0538 0.23228 
1.524 2.8267 3,7302 2.0413 0.25104 
1.435 2.8502 3,7661 5.8390 0.29458 

17.31 1.6917 2.7095 3.7630 0.00042 
10.00 2.2696 3.9326 0.7611 0.09098 
7.690 2.2240 2.8803 8.9372 0.04392 
9.962 1.9280 2.4608 2.3773 0.06356 
9.710 1.8392 2.3450 5.2044 0.06186 
9.805 1.7987 2.2919 4.2849 0.06105 
9.805 1.7888 2.2787 2.3832 0.05790 
9.800 1.7867 2.2755 2.8706 0.06256 
9.805 1.7868 2.2757 3.0070 0.06256 
9.777 1.7868 2.2757 3.1432 0.06006 
9.712 1.7714 2.2550 13.846 0.00581 
9.972 1.7739 2.2574 3.5377 0.01550 
9.951 1.7698 2.2542 8.1749 0.04035 

I0.10 1.7720 2.2579 4.7521 0.00113 
10.52 1.7755 2.2626 6.1388 0.03932 
10.76 1.7753 2.2637 1.9947 0.00956 
21.12 1.7869 2.2759 1.6287 0.04979 
29.00 1.7869 2.2759 1.7668 0.04979 
11.80 1.7190 2.2211 1.5568 0.01116 
10.28 1.7725 2.2611 2.3832 0.02435 
13.97 1.6105 2.1460 5.3662 0.00515 

JBIG + c 14.42 1.4468 1.8569 0.0798 0.01335 
JBIG + c 11.44 1.7191 2.1962 1.8809 0.01383 
JBIG + c 10.38 1.8213 2.3296 1.3101 0.01800 
JBIG + c 8.589 1.9822 2.5469 1.8561 0.02870 
JBIG + c 12.48 1.7677 2.2791 1.4309 0.01035 
JBIG + c 11.01 1.8928 2.4527 0.1777 0.04176 
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Table 5 (cont.) 

Distance Abs (error) on peak 
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Compression 
Transform Filtering Coding ratio L~ quadr Weak (%) Strong (%) 

wavelet(deep = 7) Q = 0.5Log/2 "/z, Y',,a2 bytes JBIG + c 20.48 0.7675 1.0127 1.7558 0.00290 
wavelet(deep = 7) Q = 1.0Log/2 "/z, 3",,a2 bytes JBIG + c 13.35 1.3481 1.7077 0.8030 0.00143 
wavelet(deep = 7) Q = 1.5Log/2 "/2, 3Na2 bytes JBIG + c 9.003 1.7632 2.2401 3.7591 0.02239 
wave[int](deep = 7) / 30.60 0.0 0.0 0.0 0.0 
wave[int](deep = 7) / JBIG + c 30.12 0.0 0.0 0.0 0.0 
coiflet(order = I) 3",~2 bytes JBIG + c 36.58 0.0052 0.0721 0.0 0.00091 
coiflet(order = 1) 1.25Log(max), Y",a2 bytes JBIG + c 9.053 1.8124 2.3063 6.9373 0.00661 
coiflet(order = 2) 1.25Log(max), 3Na2 bytes JBIG + c 8.349 1.8428 2.3453 0.1298 0.02855 
coiflet(order = 3) 1.25Log(max), 3"xa2 bytes JBIG + c 8.900 1.8135 2.3092 2.2459 0.03507 

Table 6. Compression tests with the S-transform and the H-transform. 

3.75Log(max) is the value of  the threshold when applied. The compression ratio (the size of  the compressed file as a percentage of  the initial one) is 
obtained after a last coding step performed with the Unix compress command. 

Compression 
Transform Filtering ratio 

S-tranl D(deep = 10) / 30.56 
S-tranl D(deep = 7) / 30.58 
S-tran I D(deep = 10) 1.25Log(max) 9.052 
S-tranl D(deep = 7) 1.25Log(max) 9.181 
H-tran2D(deep = 7) / 36.20 
H-tran2D(deep = 10) / 36.20 
H-tran2D 0.3Log(max) 33.00 
H-tran2 D+ 1 0.3 Log(max) 33.00 
H-tran2D 0.5Log(max) 28.89 
H-tran2D+ 1 0.5 Log(max) 28.89 
H-tran2D+2 0.5 Log(max) 28.89 

Distance Abs(error)  on peak 

L~ q u a ~  Weak(%)  Strong(%) 

0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
3.1307 3.9913 15.619 0.15402 
2.5549 3.2493 8.6029 0.00272 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
1.3107 1.6614 0.5526 0.00339 
0.7915 1.0925 0.5526 0.00339 
1.8141 2.2064 22.906 0.01340 
1.2333 1.6024 22.906 0.01340 
1.1524 1.5057 22.906 0.01340 

invertible wavelet transform - the (2,2) interpolating 
transform, (Calderbank, Daubechies, Sweldens & Yeo, 
1996) - where scale and detail coefficients are integers. 
Three kinds of filters were applied to columns of 
coefficients: logarithmic thresholding [detail coefficients 
smaller than a .  log(max) are set to zero], decreasing 
logarithmic thresholding (the threshold is divided by 2 m 
o r  2 m/2, where m is the number of iterations of the 
wavelet transform required for the considered coefficient) 
and fixed ratio (short + del:n%: the n smaller detail 
coefficients are set to zero). Scalar quantization (conver- 
sion of floating point coefficient to '2 bytes' integers) and 
vectorial quantization (integer division of coefficients by 
thresholds described above) has been tested too. The 
order parameter is the number of coefficients of the 
Daubechies transform. For order = 2 (the Haar trans- 
form), scale and detail coefficient are, respectively, the 
sum and the difference of coefficients of the previous 
iteration. As they have the same parity, the scale 
parameter can be divided by 2 without loss of 
information. So, the initial signal, coded with 15 bits 
(the initial image minus the first bit-plane), leads to a 
transformed image coded with 16 bits. This is called 

S-tranlD in Table 6. The two-dimensional generalization, 
close to the H transform described in White et al. (1991), 
is called H-tran2D+n (with n higher bit planes removed 
before processing). In this transform, the scale block is 
divided up into blocks of 2 x 2 pixels {a00, al0, a01, all }. 
Then, we compute, 

boo -- ao0 + alo + a01 + all 
4 

bit  ) = a00 - a l0  -+- a01 - a l l  

box = aoo + alo - aol - a l l  

b~ = aoo - a~o - aol + a~ 

All boo are gathered in the next scale block (the scale 
block). Some information is lost by the 2 bits shifting 
(aoo + alo + aol + all divided by 4). When performing 
the reverse transformation, this information is restored 
with the following relationship, 

4a00 -- bl0 - b01 -- bll = a00 + al0 + a01 + all. (8) 

The S and H transforms fully exploit the advantages of 
the Haar transform with an optimized compactness. So, 
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Table 7. Compression tests with the wavelet packet transform. 

packets?(deep = 7) means that a wavelet packet transform is performed up to the seventh level (default: tenth level). 1.25Log(max) is the value of the 
threshold when applied, sort+del:85% means that coefficients are sorted and the 85°,5 smallest ones are suppressed. 3 "xa2 bytes means that 
coefficients are coded as short integers instead of the required number of  bytes (here 3). The compression ratio (the size of  the compressed file as a 
percentage of the initial one) is obtained after a last coding step performed with the Unix compres s  command. 

Compression 
Transform Filtering ratio 

packetsS(deep = 7) 3",~2 bytes 32.90 
packetsS(deep = 7) sort + de1:85%, 3",,~2 bytes 11.46 
packetsS(deep = 7) 1.25Log(max), 3x,,a2 bytes 10.12 
packetsl(deep = 7) 1.25Log(max), 3"~2 bytes 12.32 
packetsJ(deep = 7) 1.25Log(max), 3",~2 bytes 12.52 
packetsl(deep = 7) 1.25Log(max), 3",,a2 bytes 15.32 

Distance Abs (error)on peak 

L~ quadr Weak(%) Strong (%) 

0.1095 0.3309 1.4456 0.00415 
2.3921 9.5324 3.9811 0.00657 
1.8472 2.3663 3.0902 0.00351 
1.7619 2.2560 0.6193 0.00611 
1.7814 2.2825 6.4964 0.00579 
1.6342 2.1063 3.3478 0.01260 

they are efficient lossless compression algorithms. 
However, they are not well adapted to filtering of  detail 
coefficients: the parity information is lost when such a 
filtering is performed. Indeed, any alteration of the two 
right bits of by. coefficients of the H transform will 
produce the same error on the mean value 
a00-k-al0 + a 0 1  + a l l  when the two right bits of this 
term are evaluated with the relation (8) during the image 
reconstruction. Because of this a small alteration of any 
unsignifiant detail coefficient may propagate up to the 
larger scale coefficients. This creates a systematic bias 
which increases the discrepancy. 

The main result of the wavelet transform based 
compression is that diffraction peaks are well preserved 
down to a compressed size of 20% (error on the 
integration of the weak peak is smaller than 1%). Indeed, 
strong diffraction peaks correspond to fast variation from 
pixel to pixel, and so large values of detail coefficients 
which are higher than threshold of the filtering. As the 
image difference is zero only at peak positions, it can be 
used as a mask for conditional filtering. This appears in 
Table 5 with the name 'wavelet/morph.(m/n)'. In these 
cases, the binary mask was obtained by a morphologic 
treatment (m erosions and n dilations). The result is a 
reduction by a factor of five for the difference in the 
integration of the strong peak from initial and restored 
image. 

Wavelet packet transform was tested with one of the 
conditions used for the wavelet transform tests (Table 7). 
These tests were performed with the Haar transform. 
Various criteria were used for the basis optimization: (i) 
packetsS: minimization of the Shannon entropy; (ii) 
packetsI: maximization of  the number of coefficients 
higher than a threshold equal to norm/10000; (iii) 
packets J: maximization of the number of coefficients 
higher than a threshold estimated from the median: at the 
mth iteration, the threshold is 2m(logNrow/Nrow)l/2× 
median; and (iv) packetsl: split of each scale and detail 
coefficient. 

No significant improvement was observed with respect 
to the wavelet transform, whatever is the criterion used, 

for the basis optimization. This observation can be 
compared with the behavior with respect to the deep 
parameter previously observed in the case of  the wavelet 
transform. This proves that, for our images, the first 
iterations (deep < 5) are the most important steps of the 
wavelet transform, when the mean value of close pixels is 
separated from the difference. 

6.3. Comparisons 

Discrepancies as a function of the compression ratio of  
the previous tests are shown in Fig. 9. Most of them are 
located along a diagonal. This means that, for efficient 
algorithms, the QDRI can be expressed versus the 
compression rate (R -- initial size/final size) as, 

(31 QDRI_~3.4  1 - ~  , 

for a compression rate from 3 up to 20 (final size > 5%). 

.~ 4 
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Size of the compressed file (%) 

J 

Fig. 9. Graphical comparison of compression algorithms: quadratic 
error (QDRI) is plotted versus  the compressed size. 
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Table 8. Comparison o f  DCT-compressed R (~_ 10) and wavelet-compressed (wit, R "~ 10 and R "~ 20) data sets with 
the standard data set 

Processing is performed with XDS software. Rsy m (from XDS), ratio of intensities (from Xscale) and normalized difference criteria are used. 

Criteria 

Rsy m for resolution >_ 6.32 A, (%) (number of reflections) 
Rsy m for resolution 6 [4.47 A, 6.32 A l (%) (No. of reflections) 
Rsy m for resolution ~ [3.65 A, 4.47 A] (%) (No. of reflections) 
ratio of common intensities 
y~ 1I - I re f l /Y~Ire f  for 3 _< l/cr <_ 10 (210 reflections) (%) 
Y~ [I --Iref[/~'~[ ref for 10 < I/cr < 20 (470 reflections) (%) 
y~ ]I --/ref[/y~/ref for 20 <_ I / a  <_ 30 (720 reflections) (%) 
y~ II -- IrefI/Y~ l ref for 30 <_ I / a  <_ 40 (5100 reflections) (%) 
y~([/ -- Irefl/aref for 3 < I / a  < 10 
~(11 lrefJ/o'ref for 10 < 1~or < 20 
}--~(1I -- P~fl/cr tel for 20 < I/cr < 30 
Y~(II Irefl/o'ref for 30 < l/cr <_ 40 

Standard DCT (R ~ 10) wit (R ~ 10) wit (R _~ 20) 

5.1 (1590) 5.1 (1574) 5.1 (1585) 5.1 (1487) 
5.1 (2979) 5.2 (2953) 5.2 (2982) 5.1 (2973) 
5.3 (2007) 5.3 (1968) 5.3 (2018) 5.2 (1943) 
1.000 0.993 0.997 1.001 
0 5.0 5.0 9.2 
0 1.8 1.9 3.6 
0 0.9 0.8 1.6 
0 0.5 0.4 0.4 
0 0.334 0.330 0.596 
0 0.290 0.296 0.568 
0 0.232 0.219 0.418 
0 0.184 0.141 0.188 

At a compression rate higher than 20, an asymptotic 
behavior is reached: the difference increases rapidly 
versus the compression rate. In this range, wavelet 
transform based algorithms seem to be much more 
efficient than Fourier transform based (DCT). 

In the intermediate compression range (3 _< R _< 20) 
both 'wavelet(deep = 7)/alog(max), 3",,a 2 bytes, JBIG + 
c' and 'dct + ZZ(16 × 16)/Q = n, 4 bytes' have a good 
behavior (close to the diagonal described above). So, they 
have been chosen so as to compare the effect of both 
algorithms on classical data processing (see §5). Para- 
meters are chosen to get a compression rate close to 10 
(and also 20 for wavelet based compression), instead of 
--~2 with compress for the test data set used for this 
comparison. It is important to notice that the restored 
images, compressed with compress, exhibit a compres- 
sion rate of ~-2.4 in both cases ( 'DCT' and 'wavelet'), 
when we reach a rate of I0 if we consider the 
transformed image. This proves that the high compres- 
sion rate of these algorithms is due to the reorganization 
of information rather than the filtering. The test data set 
used here comes from an experiment on a protein 
(cytochrome c3) crystal. This crystal diffracts up to 2 A. 
The lattice is cubic, with a parameter equal to ~110 A, 
measured at ,k = 1 A at a distance of 420 mm between 
the sample and the detector. For this data set, reflections 
have been collected up to 3.65 A. The following 
comparison based on this data set is given as an 
illustration of the efficiency of wavelet-based compres- 
sion algorithms. However, it would be risky to extra- 
polate the results from only one example to other kinds of 
diffraction data. It is reasonable to believe that such a 
wavelet transform based algorithm should perform well 
with closer reflections, as it automatically adapts to the 
scale of information, saving, if necessary, more low-scale 
detail coefficients. The behavior of this algorithm with 
respect to signal-to-noise ratio (I/cr) seems to be good 
too, as reflections down to I/cr = 3 are well preserved. 
However, we cannot extrapolate to a lower signal-to- 
noise ratio, no more than to other situations, without 

further study. Such a study is beyond the scope of this 
paper. 

With our test data set it appears that 'wavelet 
compressed' data are quite close but slightly better than 
DCT-compressed data considering the number of mea- 
sured reflections. This remains true if we consider the 
Rsym criterion for low and high intensities. At the 
intermediate intensities, DCT-compressed data are better. 
In any case, the Rsy m is well preserved and the difference 
is small compared with the standard deviation. These 
results are listed in Table 8. The statistical comparison of 
the result of this data processing, in terms of relative 
intensity difference, shows that reflections with low 
signal-to-noise ratio may be slightly modified. This can 
be explained: intensity are rescaled during this data 
processing with an evaluation of the gain of the detector. 
This gain is computed from the noise of the background. 
Considering that the statistic should be Poissonian, the 
gain is expressed as the ratio of the variance on the 
expectancy of this noise, 

gain "~ (a2) - (ai/)2 

Although the reflection itself is very well preserved, 
the background is smoothed by the compression. The 
estimation of the gain by the first step of the processing 
with XDS, 1.68 for the initial data, is then reduced to 1.01 
for 'wavelet compressed (R = 10)' data and 0.76 for 
'DCT-compressed' data. However, if the first step of the 
data processing - the indexation - is performed with the 
initial data set, the correct value of the gain is preserved 
and the result of the integration step of the restored data 
is improved. These results are illustrated in Fig. 10. 

The last comparison we can perform is a visual 
comparison. This is illustrated by Figs. 11 and 12 (to be 
compared with Fig. 13). Although it is not very relevant 
in our case, it exhibits kinds of alterations which are 
generated by both transforms. 



7. Conclusions 

0.1 

Lossless and lossy compression of diffraction patterns 
has been considered. Compression of such images is a 
challenging but difficult problem, as these images exhibit 
a large uncorrelated noise and are used for numerical 
evaluation. However, the results already obtained are 
welcome in the competition between the development of 
X-ray sources and the increase in the capacity of 

' i . i , L 
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& ]Q 0 wavelet (R=IO) 

\ • 1© C' DCT (integration only, R=10) 
~q ~ / - ~  IX ~ wavelet (integration only, R=10) 
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Fig. 10. Comparison of  DCT compressed (compression rate R ___ 10) 
and wavelet compressed (R --~ 10 and R "~ 20) with a standard data 
set of  restored images. Data processing is performed with XDS, and a 
mixed processing where only the integration step is made with 
restored images. The relative difference (1/NiY~w, I/ j-~efl2)1/2/ 
(1/NiY~Nilj) is plotted versus the intensity normalized to its 
standard deviation. N i is the number of  reflections with a signal-to- 
noise ratio between i - 1 and i + 1. 

bidimensional detectors on one hand, and the improve- 
ments on hard drives and network bandwidth on the 
other. 

In the case of the lossless compression (coding), a 
limit appears for each class of algorithm, no matter which 
software is used. For our test image, we obtained a 
compression rate of 2.2 for Huffman coding, 3.0 for 
LZ77, LZW and arithmetic coding, 3.7 for BWT and 4.1 
for the so-called finite context modeling. Although the 
latter is the most efficient, it is limited by the CPU time 
required (32.3 s instead of 4.0 s for the Unix compress 

Fig. 12. Enlargement of  an area of  the test image compressed with the 
'wavelet(deep = 7)/1.25log(max), 3"~ 2 bytes, JBIG + c'. Alteration 
of  the background, due to the filtering of  detail coefficients at large 
scale, is homogeneously spread. 

Fig. 11. Enlargement of  an area of  the test image compressed with the 
'dct + ZZ(16 x 16)/Q = 3/4 bytes'. We can observe an alteration at 
the foot of  diffraction peaks. Fig. 13. Enlargement of  an area of  the initial test image. 



FERRER, ROTH AND ANTONIADIS 199 

command on our HP730 station). Use of a faster 
computer should reduce this limitation. 

In the case of lossy compression, the problem is quite 
different. DCT as well as wavelet-based algorithms lead 
to a compression rate of up to 10 without any significant 
visual degradation of the image. Quantitative alteration, 
evaluated by numerical criteria from data-processing 
software, appears to be very weak. For these criteria, the 
wavelet transform seems slightly better than the DCT. 
Brute comparison of the results of this data processing 
shows that intensity differences remain low, compared 
with the standard deviation estimated by the integration 
software. However, it appears that reflections with a low 
signal-to-noise ratio are slightly modified. This can be 
explained: some statistical parameters are computed from 
the noise of the background and are subsequently used in 
the integration step. Although the reflection itself is very 
well preserved, this background is smoothed by the 
compression. This can be reduced in the future by a 
modified version of the data-processing software or by 
reintroducing the noise on the restored images. In any 
case, this does not alter significantly the result of the data 
processing. So, a strategy may consist of  processing the 
data with compressed images up to the end. Once the 
parameters of this processing are established, a final run 
can be performed on initial images so as to get the most 
accurate result, which should be very close to the 
previous one. Such a strategy will save a lot of  shared 
disk space during most of  the processing time and long- 
time archiving on disk becomes possible. Moreover, 
network transfer and reconstruction of compressed 
diffraction images is, most of the time, much faster than 
transfer of uncompressed images. This is of great interest 
during data collection, when one wants to send images on 
a remote computer in order to process these data with a 
specific software, or to take advantage on a fast CPU. 

In future, initial images should become useless once it 
has been proved that the electron-density map obtained 
with compressed images has the same quality. 

We are grateful to the referees for their suggestions. 
We also thank Pierre Legrand, Ulrike Willms and Andy 
Hammersley for theirs comments and Jay Bertran for his 
critical reading of the manuscript. 
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